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Introduction

Traditional types of failure data

Complete Data

Type-| Censored Data

0 TIME 0 TIME

Tl uNIT( —

1 T

e — 2 .

3 p— 3 it

§ |t & pr—

§ 5 prm—

6 p——————n b —

Multiple Censored Data

Type-Il Censored Data

UNIT

@ M B oW A -

0 TIME

—_
——
—_—
—
]
——

Interval Failure Data

0 TIME 0 TIME 0 TIME

unit NIt uniT

1 pre L 1y

2 ] — 2 ] —- 2

i 3 ] = LB |

4 b— & — & Py

o —— Y m—— I

6 6 Fesgesspenad—=

Figure 1.1: Types of failure data.
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Introduction

Accelerated life tests

Constant stress Step stress

T b /\ e
E high ——=—— 2
g 6
3 /\ @ I
low
0 0
Time Time
Progressive stress Cyclic and random stress
_ cyclic stress random stress
S o]
& ks
& &

Time Time

Figure 1.2: Types of accelerated life tests.
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Introduction

Degradation data from DT or ADT

@ From hard failure to soft failure: with high technology, many products are designed
with high reliability, and failure data are hard to collected for these products, even
using accelerated life test.

@ Degradation data provide a useful resource for obtaining reliability information for
highly reliable products. Examples:

o Loss of light output from an LED array

o Power output decrease of photovoltaic arrays

o Corrosion in a pipeline

o Vibration from a worn bearing in a wind turbine
@ Loss of gloss and colour of an automobile finish

@ Accelerated degradation tests can help more quickly reveal lifetime-related information
for high-reliability products.
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Introduction

@ Let Y (t) be the degradation process of the performance characteristic (PC), and w be
the failure threshold level.

@ Define that the lifetime of product 7' = inf{t : Y'(¢) > w}.

Degradation models

@ General degradation path models

Y(t) = D(t|8,b) + .

@ Stochastic degradation models, i.e., Wiener process (Liao and Tseng, 2006), gamma
process (Park and Padgett, 2005), inverse Gaussian process (Wang and Xu, 2010),
exponential dispersion process (Zhou and Xu, 2019), variance gamma, Ornstein—
Uhlenbeck, etc.

@ Two review papers: Ye and Xie (2015), Zhang et al. (2018).
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Two-phase degradation model
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Two-phase degradation model Wiener model
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Motivated

Figure 2.1: Degradation paths of OLEDs: luminosity against time (top) and luminosity

Two-phase degradation model

Wiener model

example: OLED degradation data
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Two-phase degradation model Wiener model

Related Literature for two-phase degradation models (1)

@ Tseng et al. (1995) to analyze the two-phase degradation data tend to delete early
degradation measurements.

@ Bae and Kvam (2006) introduces a change-point regression model to fit degradation
paths.

@ A bi-exponential model with random-coefficients is proposed in Bae et al. (2008) and
compared with a exponential model.

@ Bae et al. (2015) adopt a Bayesian approach to model the two-phase degradation by
using a change-point regression model under the continuity constraint.

@ With the prior information taken into account, the bi-exponential model is
reestablished in Yuan et al. (2016) under the Bayesian framework.
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Two-phase degradation model Wiener model

Related Literature for two-phase degradation models (I1)

Two-phase degradation modeling

@ Wiener process: Wang et al. (2018a, 2018b), Zhang et al. (2019), Lin et al. (2021),
Ma et al. (2023), etc.

©Q Gamma process: Ling et al. (2019), Lin et al. (2021).

© 1G process: Duan and Wang (2017). Limitations:

(i) Constraints on locations of change points;

(ii) Insufficient considerations for deriving the lifetime distribution;

(1) Neglecting the uncertainty in estimation.
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Two-phase degradation model Wiener model

Wiener process with measurement error

@ From the physical point of view, for many products, the degradation increment in an
infinitesimal time interval can be viewed as an additive superposition of a large number

of small external effects.
@ Wang (2010) studies Wiener process with random effects for degradation data.

@ The objective Bayesian method is developed for the accelerated degradation test based
on Wiener process in Guan et al. (2016).
@ Ye et al. (2013) incorporate the measurement error in the Wiener process on account

of the imperfect inspection.
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Two-phase degradation model Wiener model

Contributions

Contributions

@ We propose a change-point Wiener process with measurement error (CPWPME)

through specifying the drift of the Wiener process as a two-phase linear function of
time.

@ Besides, the variability of the degradation paths for different OLEDs drives us to
consider the unit-specific coefficients and change-points in the drift function.
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Two-phase degradation model Wiener model

Wiener process

Definition of Wiener process

@ W (t): the observed degradation character at ¢
@ Y (t) = W(0) — W(t): degradation value at ¢

@ A well-adopted form of the Wiener process is written as
X(t) =m(t) + oB(t), (2.1)

where m(t) is the drift, o is the diffusion coefficient, and B(t) is the standard
Brownian motion with properties: i) B(0) = 0; ii) B(t),¢ > 0, has stationary
independent Gaussian increments, i.e. AB = B(t + At) — B(t) follows a normal
distribution A/ (0, At).
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Two-phase degradation model Wiener model

Two-phase Wiener degradation process

Drift function of ¢th unit

The drift function of ith unit, ¢ = 1,...,n, where n is the number of units,
m;(t; BE, B, ;) is formulated as

(t: 57 8E 7 BH¢, ift <m (22)
mg\t; O P, Ti) = .
BE(t — 1)+ BEn, ift>m,

where 3/ is the higher degradation rate at the early stage, 37 is the lower
degradation rate at the stable stage, and 7; is the change-point for the ith
individual unit.
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Two-phase degradation model Wiener model

Notation

@ t; = (ti1,-..,tin,;): the ordered inspection time points for the ith unit.

@ y; = (Yi1,---,Yin;) : the corresponding observed degradations of
Y=Yt -, Yin).

@ n;: the number of inspection time points.

@ n: number of unit.

0 X;;=X(ti;)

® Ay; ;i = (Yij+1 — ¥i;): the observed degradation increment of AY; ; = (V; 11 — Yi ;)
on the time interval (t; ;,t; ;).

@ Aty =tiji1—ti.

Proposed model: CPWPME

Yi5 = Xog + € g (2.3)

where ¢; ; is the measurement error and follows A/(0, v?).
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Statistical properties of AY; ;

Expectation

/BFAt’L,ja if T > ti,j+1)
Amg; = BE(Ti —tij) + B (bijur — 7o), i iy <7 <tijya,
,BiLAti’j, if T < ti’j,

Covariance between AY; , and AY;

0'2Ati’1 —|—’)/2, Ifk:gz 1,
o?At; , +272, ifk=g>1,
cov(AY; 4, AY; ) = kY I

-2, ifk=g+lorg=k+1,

0, otherwise,

where k,g=1,...,n; — 1.
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Two-phase degradation model Wiener model

Joint probability density function (PDF) of AY;

@ Am; = (Am;1,...,Am;,,—1): the mean vector.

@ X;: the covariance matrix with the (k, g)th element given by cov(AY; 4, AY; ;) for the
ith degradation increment vector.

o AK = (AY;'J ceey AY;"nifl).

Joint PDF of AY;

_(Ayi — Amy) TS Ay — Amy)

favi(Dys) = (2m)”"F [ 72 exp ; ,

where Ay; = {Ayi1...,Ayin,—1} is the ith observed degradation increment

vector.
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Two-phase degradation model Wiener model

Likelihood function

o B = (Bf,...,BH): the higher degradation rate parameter vector.
o Bl = (BF,...,BL): the lower degradation rate parameter vector.
@ 7= (7y,...,T,): the change-point parameter vector.

= (BH,B%, 1,02,4%): all the parameters in the CPWPME model.

Likelihood function of (3%, 8%, T, 02,+?)

n n;—1 _1 A 2_Amz TE-_I A 1_Amz
L(O)ZH(QT")_ 2 |Ez| 2 exp —( Y ) 2z ( Y )

=1

(2.4)
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Two-phase degradation model Wiener model

Prior specification

©Q A truncated trivariate normal distribution is assigned for n;, fori =1,...,n, i.e.
ni = (B, BF, 7)) ~ MYN(w, 0T gm0, pr0, ri>0,) Where w is the mean vector
and  is the covariance matrix, and Zygn oo gLq, 7,<0,} iS the indicator function.

© The conjugate prior for w is also a trivariate normal distribution MVN (k, ¥). Let the
mean vector k = 03 and the covariance matrix ¥ = 107615, where 03 is a three
dimensional zero vector and Is is a 3 x 3 identity matrix.

© Decompose the Q) as Q2 = ©QO, where © = diag{61,02,05}. Assign the
inverse-Wishart distribution ZW(p, S) for ). Specify the Gamma distribution
G(ag,bg) as the prior distribution of 8y for k =1,2,3. Let p =4, S = I3, and
ag = 0.0001, by = 0.0001.

@ The inverse Gamma distributions ZG(a,, b, ) and ZG(a-, b-) are assigned for o2 and
v Oy g

72 respectively. Let a, = b, = a, = b, = 0.001.
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Two-phase degradation model Wiener model

Posterior inference

0= (Th, cee 7”%7027727Q791792503)-

Joint posterior distribution of @

n

n(0ly) <L(B", 8", 7,077 [HW(mlw,Q)] m(w|k, ©)m(Qlp, S)

=1

(2.5)

3
X [H 7r(¢9k|ak,bk)] 7(0?|ag, by)m(v?]ary, by)
k=1
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Two-phase degradation model Wiener model

Posterior output: failure-time distribution

@ The OLED devices are regarded to have failed if their luminosity fall below 50% of
their initial luminosity.

@ Define the 50% of six OLEDs' initial luminosity as a vector (Fi,...,Fs).

@ Failure-time of the ith testing unit is defined as T; = inf{t|Y (¢t) < F;}, where F; is
the failure threshold of ith device.

Cumulative distribution function (CDF) of the failure-time

CF PR :
o ( FIG(taﬁH7ﬁ)7 |ft§7—z'7 ( )
T,(t) = : . 4 ' 2.6
Frg (t Bl FoBlophnl) | ify >

fori=1,...,N. Here, Fig(z;pu, \) denotes an inverse Gaussian (IG)
distribution with mean vector ;1 and shape parameter \.
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Posterior output: mean time to failure (MTTF)

MTTF of each OLED device

Fi PR R Fi — (B — B
e =pm |1 = Fi <T~ﬂH2;ﬁ~H"72>]+ (BﬂL -
7 [F: — (B = 8H)nl? Fi — (B = BH)7m [Fi— (BF = BP)m)?
X IFra T-/B.Lz ) /BlL ) 0_2 )

fori=1,...,N.
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Simulation Study

©Q The CPWPME data are randomly generated under the following three different setup
for the number of units and the number of inspection time points, i.e
Scenario I: n =5, n; = 16;
Scenario Il: n =5, n; = 21;
Scenario lll: n =10, n; = 21.
© The inspection time points are chosen from 0 to 18 with identical time intervals under
each scenario.
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Table 2.1: Parameter estimation results for scenario I.

Two-phase degradation model Wiener model

Stat.
True
Bias
SE
RMSE
CP

G
6.720
0.142
0.318
0.348
0.928

B
7.082
0.017
0.312
0.312
0.990

s
6.626
0.177
0.341
0.384
0.910

gt By
7.713 7.147
-0.259 -0.030
0.398 0.325
0.474 0.326
0.876 0.960

Bt By
1.741 2.154
0.223 -0.061
0.465 0.430
0.516 0.434
0.960 0.984

By Bt
2233 2.182
-0.096 -0.122
0.416 0.422
0.427 0.439
0.968 0.960

I3
1.903
0.128
0.480
0.496
0.966

Stat.
True
Bias
SE
RMSE
CP

1
12.828
-0.284

0.490
0.566
0.924

2 T3

T4 T5

12.214 11.660 10.787 12.616

-0.085 0.074
0.413 0.523
0.422 0.527
0.966 0.972

0.291 -0.209
0.405 0.463
0.498 0.508
0.940 0.940

wll]  w[2]
7.000 2.000
0.067 0.057
0.202 0.320
0.213 0.324
0.994 0.996

wf3]  o?
12.000 2.000
-0.021 0.048
0.257 0.704
0.257 0.705
1.000 0.974

72

1.000
0.185
0.487
0.520
0.970
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Two-phase degradation model Wiener model

Table 2.2: Parameter estimation results for scenario IlI.
stat. gt gt pf B BT B By By BE B
True 6.720 7.082 6.626 7.713 7.147 1.741 2.154 2.233 2.182 1.903
Bias 0.149 -0.007 0.193 -0.297 -0.024 0.239 -0.034 -0.120 -0.136 0.119
SE  0.320 0.294 0.325 0.373 0.276 0.463 0.431 0.410 0.417 0.412
RMSE 0.353 0.294 0.378 0.477 0.276 0.521 0.432 0.427 0.438 0.429
CP 0934 0972 0.924 0.884 0.986 0.946 0.974 0.972 0.974 0.986
Stat. 7 T T3 T4 s w1 w2 wB] 0% A2
True 12.828 12.214 11.660 10.787 12.616 7.000 2.000 12.000 2.000 1.000
Bias -0.292 -0.052 0.069 0.331 -0.155 0.060 0.057 0.002 0.159 0.085
SE  0.432 0.403 0.448 0.450 0.347 0.191 0.303 0.221 0.717 0.393
RMSE 0.521 0.406 0.453 0.559 0.379 0.200 0.308 0.221 0.733 0.402
CP 0.930 0.974 0.970 0.918 0.970 1.000 1.000 0.998 0.944 0.960
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Two-phase degradation model Wiener model

Table 2.3: Parameter estimation results for scenario lll.

S
True 6.720 7.082 6.626 7.713 7.147 6.633 7.218 7.330 7.257 6.863
Bias 0.179 -0.022 0.259 -0.362 -0.064 0.249 -0.094 -0.152 -0.113 0.109

SE 0.255 0.227 0.248 0.308 0.219 0.245 0.233 0.251 0.246 0.226

RMSE 0.311 0.228 0.358 0.475 0.228 0.349 0.251 0.294 0.270 0.250
CcpP 0.908 0.978 0.894 0.814 0.980 0.890 0.978 0.946 0.966 0.976
Stat. B By B8 Bt B B BY B¢ By Bl
True 2.478 2123 1.804 1.300 2.356 1.986 1.995 2.298 2.260 2.188
Bias -0.174 0.031 0.195 0.347 -0.108 0.077 0.052 -0.162 -0.125 -0.038

SE 0.378 0.360 0.331 0.433 0.331 0.322 0.303 0.343 0.349 0.326

RMSE 0.416 0.361 0.384 0.555 0.348 0.331 0.307 0.379 0.371 0.328
CcpP 0.952 0.984 0.960 0.878 0.990 0.986 0.990 0.972 0.976 0.990
Stat. T T2 T3 T4 T5 T6 7 T8 9 T10
True 12.503 12.428 12.041 10.910 12.339 11.969 11.915 11.194 11.738 12.229
Bias -0.220 -0.199 -0.129 0.272 -0.128 -0.078 -0.012 0.329 0.093 -0.141
SE 0.369 0.311 0.331 0.349 0.331 0.327 0.292 0.358 0.286 0.345

RMSE 0.430 0.369 0.355 0.442 0.355 0.336 0.292 0.486 0.301 0.372
CcP 0.930 0.946 0.970 0.894 0.962 0.968 0.992 0.858 0.980 0.960
Stat. w(1] wl[2] w([3] o? ¥?

True 7.000 2.000 12.000 2.000 1.000
Bias 0.058 0.088 -0.094 0.063 0.041
SE 0.135 0.206 0.159 0.517 0.290

RMSE 0.147 0.224 0.185 0.520 0.293

CcP 0.992 0.986 0.996 0.952 0.956
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Two-phase degradation model Wiener model

Example: OLED data analysis

@ The OLED degradation data was modeled using the CPWPME approach, with
parameter estimation conducted via hierarchical methods.

@ The Markov chains were initiated with a 20,000 iteration burn-in period, followed by
an additional 30,000 iterations to obtain posterior samples for inference.
@ Estimation results for the CPWPME model are summarized in Table 2.4. The

estimated posterior means for w and the covariance matrix 2 are given by:
w = (3.76,9.74,4.36)
0.16350  0.00353  —0.00368

Q=1 000353 0.22370 —0.00108
—0.00368 —0.00108 0.09092
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Two-phase degradation model Wiener model

Table 2.4: Parameter estimation based on the CPWPME model.

OLED BH Br
Est. SE 25% 97.5% Est. SE  25% 97.5%
#1 3.665 0.224 3.204 4.100 9.800 0.302 9.217 10.440
#2 3.653 0230 3.177 4.099 9.557 0.331 8.821 10.120
#3 3.607 0222 3.243 4.143 9.819 0294 9271 10.460
44 3.806 0215 3.404 4.261 9.635 0.295 8.992 10.170
#5 3775 0230 3.323  4.250 9.808 0.290 9.251 10.420
#6 3932 0256 3.503 4.488 9.802 0.285 9.234 10.400
T
Est. SE  25% 97.5%
#1 4475 0131 4210 4.749
#2 4482 0144 4218 4.802
#3 4364 0124 4101 4.586
44 4425 0121 4193 4673
#5 4165 0152 3.872 4.447
#6 4266 0129 4013 4.506

TANG Yincai (;#%R7) (ECNU) SRSE 2024, Hangzhou



Two-phase degradation model Wiener model

Models comparison

Benchmark models

@ CPWP: The CPWP model is similar to our CPWPME model but omits measurement

error.

@ TPLCP: y; ; = Gtog = itig + g J=1oo% for the ith item data,
Gitij —RiSi +€ij,  J=%+1L...,n
where y; ; is the jth observation measured at time t; ;, and g; € [t4,,t,,41) is the
change-point of ith item. The error ¢; ; are assumed to be i.i.d. N'(0,v?).
© BE: y;; = ¢iexp(— (v + Avi)ti;) + (1 — ¢i) exp(—iti ;) + €,; where
i=1,...,0,j=1,...,n;, and error ¢, ; are assumed to be i.i.d N'(0,w?). Denote

d=(d1,...,00)T, y=(71,-..,7)7, and Ay = (Avyq, ..., Ay)T.

TANG Yincai (;%%R7) (ECNU) SRSE 2024, Hangzhou



Two-phase degradation model Wiener model

Table 2.5: Parameter estimation of defferent benchmark models.

OLED  CPWP Model TPLCP Model BE Model
gH Bt~ ¢ S ¢ v Ay
41 3.799 9.269 4.373 -8.947 -5.440 4506 0.647 4.741 -4.681
42 3797 9.300 4.369 -9.144 -5.640 4.486 0.647 4.741 -4.680
#3  3.815 9.305 4.310 -9.088 -5.560 4.256 0.634 4.742 -4.679
44 3.849 9.334 4364 -9.445 5555 4.439 0.622 4.743 -4.678
45  3.850 9.429 4210 -9.670 -5.936 4.025 0.609 4.745 -4.676
46  3.903 9.407 4.287 -9.819 -5.654 4.215 0.596 4.745 -4.676
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Two-phase degradation model Wiener model

CPWPME CPWP
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Figure 2.2: The posterior degradation path fits; luminosity vs. log(time) for each OLED
data.
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Two-phase degradation model Wiener model

Mean squared prediction error (MSPE)

MSPE = Z (yi,j — 'gi,j)z 5 (27)

J=1

where y; = {¥i1,...,¥Yin, },% =7, is the degradation data of the 7th unit and
Yi = {¥i1,---,Uin,} is the corresponding prediction value.

Table 2.6: MSPE for the 7th OLED degradation path.

Model CPWPME CPWP TPLCP BE

MSPE 360.04 406.04 436.29 678.53

@ The CPWPME model's MSPE is much smaller than that of three other models,
indicating its superiority.
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Two-phase degradation model Wiener model
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Figure 2.3: Posterior distribution of the failure-time for each OLED.

@ The MTTF estimates for each unit are (352.28,267.84,201.25,180.67, 139.88,125.77).
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Two-phase degradation model Inverse Gaussian model
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Motivated

Degradation rate(%)

Two-phase degradation model Inverse Gaussian model

example: lithium batteries
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Two-phase degradation model Inverse Gaussian model

Contributions

(i) A novel two-phase reparameterized |G (rlG) degradation model with distinct change
points and model parameters for each individual system;

(i1) Derive the distribution of failure time and remaining useful life (RUL), and propose an
adaptive replacement policy;

(iii) Employ bootstrap and Bayesian approach to generate interval estimates for the
parameters.
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Two-phase degradation model Inverse Gaussian model

Reparameterized |G distribution

Connection to |G distribution
The rlG distribution 7IG(0, ) relates to the traditional IG distribution
IG(a,b) as a = §/v and b = §°.

Moment generating function (MGF)

My (t) = B(e) = (V1 F). (2.8)

Additive property
If}fl ~ TIG((SlafY) 7Y'2 ~rlG (5277)1 then }/1 +}/2 ~ T.IG((SI +627ry) :

TANG Yincai (;%%R7) (ECNU) SRSE 2024, Hangzhou




Two-phase degradation model Inverse Gaussian model

PDF
If a random variable Y follows rlG distribution, then its PDF is

fric(yld,v) = Le‘svy‘?’/?e_(52?’71“23’)/2, y>0,6>0 v>0 (2.9)

Ver

CDF

Frra(ylo,y) = @ [\/?77 - %l +e20 [—\/??7 - %} , (2.10)

where ®(-) is the CDF of the standard normal distribution.
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Two-phase degradation model Inverse Gaussian model

rlG process

Definition of rlG process
rlG process {Z(t),t > 0} satisfies the following properties:
(1) Z(0) = 0 with probability one;

(1) Z(t) has independent increments. Specifically, Z (t2) — Z (t1) and Z (s2) — Z (s1) are
independent for all t5 > t1 > s9 > 51 > 0;

(i) Forall t > s >0, Z(t) — Z(s) follows the rlG distribution 7IG (5(A(t) — A(s)),7),
where A(t) is a monotone increasing function with A(0) =0, 6 and « are unknown

parameters.

@ Denoted as rZG (6A(t), ).
@ The mean and variance of {Z(t),t > 0}, which are §A(t)/~ and §A(t)/~3, respectively.
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Two-phase rlG degradation model

Two-phase rlG degradation model

Suppose a system'’s performance characteristic degrades in two distinct
phases, separated by a single change point.

Y ()| ~ rZG (m(t;61,02,7),7), T~ N (pir, 02),
5t t<r 2.11
m(t; 01,02, 7) = ' =7 (210)
52(t—T)+51T, t>T,

where 01 and J9 are the drift parameters for ¢ < 7 and ¢ > 7, respectively.

TANG Yincai (;%%R7) (ECNU)
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Failure-time

Yi(t), t<,

LetT:inf{t|Y(t)ZD}, and Y(t):{ Yl(T)—i-YQ(t—T) t> T

Conditional reliability function of T’
00<t<rt

Bt|r)=P(T>t|r>t)=PMYi(t) <D|71>t) = Fzg(Dlort,y).  (2.12)
Qt>T
Bt|r)=P(Y(t)<D|7r<t)=P{i(r)+Ya(t—7) <D |7 <t)

D (2.13)
_ / Frzg(D = yr|03(t — 7),9) 1 (y» | 7)dyr,

where y, represents the degradation value at 7, and fi1(y, | 7) is the PDF of y..
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Failure-time

Unconditional reliability function of T’

Rt)y=PYt)<D,7>t)+ P(Y(t) <D,0< 7<)

= Fy(t] 1) Gr(t) + / g (7, 2B (¢ | 7) di,

(2.14)

where G, (t) is the survival function of random variable 7.

MTTF

MTTF = E(T) = / h R(t)dt. (2.15)
0
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RUL

Let Sy =inf{z;Y (t+2) >D|Y(t) < D}.
Conditional reliability function of S}
(i) When z +t < 7

Fs,1(z | 7) = Fozg(D — Y (t)|617, 7). (2.16)
(ii) Whent <7 <z +t:

F’gt,g(x |7)=PY(t+z)<D|Y(t) <D)
D
- / Fy26(D — yoloalt + 2 — 7),7) fuyr | 7y

(2.17)

(iii) When 7 < ¢:

Fs,3(z | 7) = Fozg(D — Y (t)| 62z, 7). (2.18)

v
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Two-phase degradation model Inverse Gaussian model

Unconditional reliability function of .S;

Rs,(z) =P(Y(t+z) <Dt <z+t<T)
+PY(t+z)<Dt<t<z+t)+PY(t+x)<D,t>T)
o _ ot 2\ & (2.19)
=Fg,1 (2| 7)Gr(z+1) + 9o (lppr, 07) Fs, 2 (2 | 7) dr
t

t
n / 90 () Fs, 5 ( | 7) dr-
0

Mean of RUL at time ¢

MRL = E(S,) = /O " R, (x)ds. (2.20)
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Two-phase degradation model Inverse Gaussian model

@ [ systems under inspection in a degradation test.
@ Deterioration pattern follows the two-phase rlG degradation model.

@ Y; ; is the observed degradation value at the measurement time ¢; ;,
i=1...,I, j=1,...,n,, and 0<t1‘71 <<ty

0 Let Ay; ;=Y;; —Yij—1, Yio=0.

® Denote AY; = (Ay1,...,Ayin,) , AY = (AY;",---,AY;") "

TANG Yincai (;#%R7) (ECNU) SRSE 2024, Hangzhou



Two-phase degradation model Inverse Gaussian model

Threshold Threshold
c Degradation path s Degradation path
] S
é Yin ) 1G(c,d) é Yin TIG(c,b)
> Y 2Y
a0 } IG(a,b) ? a8 " }IIG(a,b)

Y; Y; \
rIG(a+c,b)
t; T i t; T ti1
Time Time
(a) IG process (b) Re-parameterized IG process
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Conditional PDF of Ay; ;

Ay, j ~rIG (Amﬁ,’? (61,i5 62,1, Ti) ,7) ;

(517¢Ati7j k=1,
(k) _
Ami,j (016,026, Ti) = § (815 — 024) Ti + 02,itij — 014itij—1, k=2,
02,i A 5, k=3,
Atiyj :ti,j _ti,j—l and ti70 =0,1= 1...,[, ] = 1,...,ni.
*) Am® = (81— 6a2) 7 + Gaitigen — v, Am®) = 5, .At; ;
Am® = 5,8t iy = (014 = 82,3) Tu + S itigr — Suitiy m; 2,i A
5 g 5
5 < =
® g ®
3 ) g
tio by oT tijo1 T tij T i by
Time Time Time
(@) 72>t (b) tij—1 < T <t (¢) 7 <tij—1

Figure 2.5: Three scenarios for change points and inspection time.
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Conditional PDF of Ay; ;

Let )\571]) = I(Tz > ti,j) , )\5’2]) = I(ti’j_l <7< ti,j) , )\573]) = I(Tl < ti7j_1).

(1) (2) (3)
A (813,025, 75) =Am) (815, 82,4, 7)™ % Am) (81,4, 02,, )7 % Am®) (81,4, 62,0, 7) 7 .

Amg j (01,4,024,Ti)
\ 2T
{ [Am; ; (01,4, 024, 7)) Ayz’_,jl + V2 Ay; ; }
X exp 4 — :

€xp {VAmz',j (5172‘, 52,2', Tz)} Ay._fo’/Q

J

fi,j (Ayz,] | 61,i7 62,i77—i7 7) -

2
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Likelihood function

@ Let 61 = (6171,...,617])1—, 62 = ((5271,...,(5271)T and 7 = (Tl,...,T[)T.
o Denote n = (87,67,7) ", 0, = (1ir,02) " and 9 = (67, n7) "

@ Given the observed data AY, the likelihood function is

co MNi

obs AY|’(9 H/ Hfz,] Ayzj |51 1762 1,7-27 )gT(Tl|0 )dT’L (221)

Remark: Obtain a closed-form solution for the ML estimates of 1 is not feasible.
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Two-phase degradation model Inverse Gaussian model

Bayesian analysis

}/;,(t|7-z) ~ TIg (m(ta 61,2'762,1'77-2')77) y Ti ™ N (MT?OE) ) 1= 17 cee 717
01,it, t<m,

m(t; 014,024, 7;) =
v 0o (t — 1) + 01,7, t> T,

(MT7 O’E) ~ NIGa (ﬁTanTvaa€T> e N(UJ, ’12%
5172’ ~ N (,Ml, O_%) 752,i ~ N (,Uf27 0%)7
(11,07) ~ NIGa (Br,m,v1,61) , (p2,03) ~ NIGa (B2, m2,v2, &),

where N1Ga(-) denotes the normal-inverse gamma distribution.
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Two-phase degradation model Inverse Gaussian model

Joint posterior distribution of 8

.
© Let 0 = (9, 1,07, 12,0%)  be the parameter vector.

@ According to Bayes' theorem, the joint posterior distribution of @ can be derived as

(0| AY) o< 7 (pr,02) 7 (1, 01) 7 (2, 03) w (v | w,6) 7 (7 | por, 02)

) N (2.22)
X T (51 | ,ul,al) T (52 | ,ul,ol) fay (AY | 81,02, 7,7).

@ Employ the Gibbs sampling algorithm to generate posterior samples of the
parameters, thereby facilitating Bayesian inference.
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Two-phase degradation model Inverse Gaussian model

Adaptive replacement policy

0 0=1t;0 <t;1 <--- <ty are discrete inspection times.
@ y; ; represents the observed degradation value, y; 1.5 = {vi1,Yi2,---, i, }-

@ lteratively update estimations of model parameters and RUL distributions,
fs.(@|yi1:5)-

@ Evaluate candidate maintenance actions at each inspection time point.

@ Determine optimal preparation and maintenance actions as data continues to be
collected.
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Two-phase degradation model Inverse Gaussian model

Policy assumption

@ Maintenance is executed perfectly by replacing the system spare parts.
@ Failure is detected only by inspections, and the cost of each inspection is ¢;.
@ An adequate supply of spare parts.

@ Maintenance preparation time w is usually required.

Two maintenance actions

At t; j, the decision maker has the option: replace the system or wait until the
next inspection.

@ Corrective replacement: implement if the system is found to have failed during the
inspection, incurring a corrective replacement cost denoted as c..

@ Preventive replacement: implement when it is expected that the system is nearing
the failure state, incurring a preventive replacement cost denoted as cp,.
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Two-phase degradation model Inverse Gaussian model

Candidate replacement time at ¢; ;

Tui=tos g+ o+ i3] + 5
T =1 f € ¢ 2, o d
" %11 {/O T+t +w fsi(@lyi15)dz

+ /+°° pralliy o),

S\ L |Yi,1:5
Ti,j—ti,jf t( | ' J) T;; ’

where |¢| = max{h € Z | t;, <}, and ¢ is the downtime cost during the

preparation time after system failure.

Optimal preparation and replacement time

As the values of 7; ; are successively updated,

T =inf{T;;, —t,; <w}, and T =T +w. 2.23
A ti ; 2] 2] 7 2
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Two-phase degradation model Inverse Gaussian model

Performance evaluation

@ Consider a set of I systems, each of which operates for a single cycle.

0 LetX; = min{ﬁ*,’ﬁf}, where T.* represents predicted optimal maintenance time, and

T represents actual failure time.

Actual cost rate of the i-th system

Cp+Ci\_Xi—wJ X, — 7
_ T Y
CRi = ce + 6| Xi] + (224
5 Xz - 7?:7
7? + @

Average cost rate for all systems
I

Tr— iz R (2.25)

SRSE 2024, Hangzhou
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Two-phase degradation model Inverse Gaussian model

Simulation study

Simulation settings

@ (I) I =5andn; =20; (Il) I =5 and n; = 40; (Ill) I =8 and n; = 20.

@ Considering the heterogeneity, we generate 01,1, ...,01,7 from N(4,1), d21,...,02.1
from N(15,1), and 7q,...,7; from N(10,1).

@ For each scenario, we generate 500 samples to reduce the effects of randomness on the
results.

v
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Two-phase degradation model Inverse Gaussian model

Simulation study

@ Bayesian method:
o Flat priors: (ur,0,) ~ NIGa(8,100,0.01,0.01),
(p1,01) ~ NIGa(1,100,0.01,0.01), (p2,02) ~ NIGa(2,100,0.01,0.01), and
~v ~ N(5,100).

o Initiate a burn-in period comprising £ = 5000 iterations, and an additional
S — £ = 5000 iterations are conducted to obtain posterior samples.

@ ML method: the point estimates are calculated by the EM algorithm, corresponding
interval estimates are calculated by parametric bootstrap method with 5 = 500.

@ Indexes of assessing different methods: relative bias (RB), rooted mean squared
error (RMSE) and 95% coverage probability (CP).
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Parameter estimation performance of two methods

Table 2.7: Parameter estimation from Bayes and ML methods for two scenarios.

Scen. Meth. Stat. (51’1 01,2 01,3 (51’4 (51’5 (52)1 (52,2 02,3 5274 02,5 ¥
RB 0.024 0.029  -0.007 0.015 0.012 -0.026  0.019 0.023 0.056 0.003 0.011
Bayes  RMSE 1.326 1.363 1.357 1.332 1.330 0.422 0.424 0476 0.422 0431 0.168
CcP 0.956 0.953 0.946 0.953 0.957 0.941 0.925 0.900 0.928 0.926  0.964
RB 0.057 0.039 0.040 0.057 0.050 0.065 0.071 0.057 0.078 0.060 0.057
MLE RMSE 1.315 1.381 1.302 1.401 1.508 0.641 0.645 0576 0.667 0.739  0.308
CP 0.889 0.922 0.878 0.900 0.833 0.922 0.922 0.900 0.889 0.867 0.811
Scen. Meth. Stat. 51,1 51,2 51,3 51,4 51,5 52,1 52,2 52,3 52,4 52,5 o
RB -0.005  0.007 0.023 0.011  -0.005 -0.019 0.000 0.016 0.000 0.012 0.001
Bayes RMSE 1.068 1.011 1.065 1.015 1.044 0.349 0.283 0.275 0.355 0.332 0.124
CP 0.930 0.945 0.950 0.944 0.927 0.902 0.925 0.947 0.885 0.902 0.914
RB 0.036 0.035 0.017 0.032 0.039 0.029 0.041 0.036 0.025 0.042  0.039
MLE RMSE 0.944 1.010 0.880 0.900 0.985 0.331 0.358 0.323 0.328 0.346 0.150
CcP 0.905 0.890 0.905 0.920 0.900 0.895 0.890 0.930 0.930 0.920 0.865
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Model comparison in reliability estimation

@ Linear A(t) = t; Power A(t; ) = t*; Exponential A(t; o) = exp(at) — 1.

| 1l
1.54
1.29 1.25
111 112
w 4
7 1.0
=
14
0.5+
. 0.23 025 024
--
L Bayes Linlear PO\INEI' E>I<p Bayes Linlear PD\INEF E;(p
Method

Flgure 2.6: Average RMSE of MTTF estimators based on various models.
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Parameter estimation with different models

Table 2.8: RMSE and RB results for different models.

Training(30)  Prediciton (19) Overall
RMSE RB RMSE RB RMSE RB

Proposed 0.448 0.248 1538 0.060 1.020 0.175
Linear 3476 1.442 3685 0.156 3.558 0.943
Power 2.057 0568 2475 0.113 2229 0.391

Exp 0.908 0.313 1.611 0.065 1.230 0.217
Duan 0434 0239 1976 0.075 1.276 0.175

Model
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Two-phase degradation model Inverse Gaussian model
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Figure 2.7: Degradation path training and prediction results for battery #2 using different
methods, with a zoomed-in view of the potential change point locations.
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Figure 2.8: Reliability and density functions of failure time based on HB method.
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Figure 2.9: Reliability and density functions
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Two-phase degradation model Inverse Gaussian model

RUL-based adaptive maintenance policy

@ Cycles 1-30 as historical data, continuously acquiring new data over time.
Qci=2c = 600, ¢, = 200, and ¢, = 100.

© Maintenance preparation period is w = 1.

Benchmark policies

i) Classical replacement policy (CRP): preventive maintenance time is determined by
the system'’s mean time to failure 77

i) Ideal replacement policy (IRP): the assumption of perfect predicted failure time 7;7.
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Figure 2.10: Average cost rate for each policy.
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Outline

e Multivariate degradation model
@ Bivariate Wiener model
@ Multivariate inverse Gaussian model
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Multivariate degradation model Bivariate Wiener model

e Multivariate degradation model
@ Bivariate Wiener model
@ Multivariate inverse Gaussian model
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Multivariate degradation model Bivariate Wiener model

Motivated example: HMT degradation data

@ To maintain the high availability and high efficiency of heavy machine tools, preventive
maintenance and system health management are implemented.

@ The heavy machine tools (HMT) have two important PCs: the positioning accuracy
and the output power.

@ HMT fails if the value of the positioning accuracy exceeds the threshold level w; = 35
or the value of the output power exceeds the threshold level wo = 120.
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HMT with two PCs
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Figure 3.1: Degradation paths of the positioning accuracy and output power.
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Multivariate degradation model Bivariate Wiener model

Objective

@ The positioning accuracy is measured by programmed procedures, while measurements
of the output power are recorded by the system operators, and may be missing at
some time points.

@ Historical information and experts’ experience have indicated that these two
performance indicators are correlated.

Objective

o How to build a model for bivariate degradation process?

o How to estimate the missing values of the output power?
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Related Literature

@ LED system consists of many LED lamps for different lighting purposes, and each LED
lamp can be viewed as a PC in the LED system (Sari et al., 2009).

@ A rubidium discharge lamp: The rubidium consumption and the light intensity (Sun
and Balakrishnan, 2013).

@ Modeling methods: using copula function (Sun et al. 2010,2012, Wang et al.,
2014,2015, Peng et al., 2016, Duan and Wang, 2018).
o Difficult to choose copula function.
o Reliability function of product is not analytic.
@ No physical explanation.
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Bivariate Wiener degradation model

Assume two PCs in a system, degradation process of the s-th PC is:

}/;(t) = aﬁshs(ta’)/s) + UsBs(hs(t77s))a s=1,2, (31)

@ (5 and o denote the drift parameter and the diffusion parameter.
@ hy(t,vs) is a non-decreasing function of time with h4(0,vs) = 0.
@ B,(-) is a standard Brownian motion, where By (-) and B(-) are independent.

@ « is random, and follows normal distribution with mean 1 and variance §2.

Comments on «

o « could describe the unit-to-unit variation among the systems.

o With the same working environment for both PCs, « is a common factor affecting the
degradation process.
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Joint PDF of Yi(t) and Y5(¢)

31h1(t,71))
Baha(ty2)/’

othy(t, 1) + 02BER3(t, 1) 62B1Baha(t, Y1)ha(t, V2)
6261 B2ha (t,y1)ha(t,v2)  o3ha(t,y2) + 6285k (L, 12)

where f1 = (
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Failure-time distribution: joint CDF
@ Denote that the threshold level of Y;(t) is ws, s = 1, 2.

@ The lifetime of the s-th PC is defined as T, = inf{t : Y; > w;}.
@ The joint CDF of 17 and T5 is

F(ti,ta) = A1 + Ay + Az + Ay,

where
A = bun <—W1+£}<hll (t1,"/1)7 —W2+,32;<h22(t2772)7 Kff;@) ;
2 252
As = exp { 2%;2 i 2620«226 }qu (—W1+B1h}<(lt1m)+cly —w2—ﬁ2h;<(;2,"/2)—c4’ 1;5?2) 7
2, 252
As = exp { 2%%&11 + 2@1:%15 }bvn (-Wl _ﬂlh]l{(fl,’YI)_Cs7 —w2+ﬂ2h;{(:2ﬁ2)+02’ };1%2)'
Ay = exp{Q’ifi%“)1 + % + 242 (ﬂ;i?l + %)2}

—w1—B1hi(t1,71)—=C1—C3 —wy—Baha(ta,y2)—Co—Cy Cs
van( 7 R T RIS )
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Failure-time distribution: Reliability function

1 TL o (2 2% — 20xy + y?
bvn(xl,xg,H) = m/ / exXp {—w dﬂ?dy,
Kl - \/U%]’H(tl)’yl) + 5%52h%(t177l)5

Ky = \[03ha(t2,12) + 530203 (12, ).
C1 = 2B1h(t1,11)Bawad” /03,

Cy = 26101 Baha (b2, 72)6° /07,

C3 = 2B¢ha (b, 71)w16% /0,

Cy = 2B5ha(ta, 2)wad? /03,

Cs = Biha(t1,71)B2ha(t2, 72)8°.
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Multivariate degradation model Bivariate Wiener model

Failure-time

@ The lifetime of system is defined as T' = min(73, T3).

Reliability of system at time ¢

R(t) = F(t,t) + 1 — Fr,(t) — Fr,(t), (3.3)

where Fr (t) is the CDF of Tj:

\/ﬁgéz(hs (t;')’s))2 + Jghs(ta 78)
252 2 252 2
N exp{ 2Bsws " 23252w? } _2,355 wshs(t,vs) + 02(Bshs(t,7s) + ws) _
o2 ol 02+/B26%(hs(t,7s))? + 02hs(t,7s)

S

Fr (t)=® ( Bshs(t,vs) — ws )
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@ The RUL of the s-th PC at time tj:
LE‘:) = 1Ilf{l : Ys(l +tk) 2 UJSD/S(t]) < ws,j = 1’2’. .. ’k}’ 5§ = 1’27

where t1, ..., tx are the measurement times.

@ The RUL of the system:

Ly, = min(L{Y L)

k

@ The reliability function of L, at time [:

RLtk )= FLtk @) +1- FL%) () — FLii) 1), (34)
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Multivariate degradation model Bivariate Wiener model

where Fng)(Z) is the CDF of LI(CS)' with analytical form

me=¢(ﬂ&@%%%w%—nm»)
\/ﬂSQSQ(hS(l775))2 + Ughs(l,’)/s)

+m{mm%—mmxgﬁww—mMV}

2 4
O Os

% (_ 2/8252(‘*13 - Ys(tk))hs(la'YS) + Ug(ﬂﬁshs(l")/s) + (ws - n(tk)))) .
024/ 8252 (hu(1,7))? + 02ha(1. )
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Data format

@ Suppose that a total of n systems are tested in an experiment.
@ For the i-th system, let y;,; be the j-th degradation observation of the s-th PC' at the
measurement time t;55, s = 1,2, =1,2,...,mys.

@ yis0 =0. Let Zisj = Yisj — Yis(j—1) and
Aisj = hs(tisjyvs) — hs(tis(]‘_l),'}/s), S = 1,2,i = 1,2, .. .,n,j = ].,2, ey, Mg

@ Then for the i-th system, the model can be described as

Zisjlai ~ N(aiﬂsAisjaUEAisj)7and Q; ~ N(1752)7

where s =1,2, j =1,2,...,mys.
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Bayesian analysis

0 B, ~ N(1,10%);1/02 ~ IG(0.01,0.01); 1/62 ~ IG(0.01,0.01); v, ~ IG(0.01,0.01).

Gibbs sampling

@ Full conditional posterior distribution of «; is normal distribution with mean fi; and
variance 512’ where SZQ = (5_2 + 0-1_2/8%}1’1 (tilm“,'Yl) + 0-2_26§h2(ti2mi2772))_1a
[L = 612(5_2 + ‘71_251%17711-1 + 02_2/82yi2mi2)-

@ Full conditional posterior distribution of 3, is normal distribution with mean fig, and

variance &%8, where

n
53, = (L/ag, + Y aths(tismi,,15)/03) 7,

i=1

n
fis, = 53, (s, /0F, + D Qilhism,, /02),5 = 1,2.
i=1
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Bayesian analysis

Gibbs sampling

@ The full conditional posterior distribution of o2 is inverse gamma distribution

n n Mmis
IG | as+ 3 mis, bs+ 5 3 3 Giss—eibehiod)’fonsy |, s=1,2.
i=1 i=1j=1

@ The full conditional posterior density function of ;s is proportional to

zrs

2
1
1};[};{ V Aisj

& (Zisj - aisAisj)Q ca—1
L. eXP{ 2U§A15J } (’y,s) eXp{ ds’ys}‘

(2
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Estimation of the missing values

@ If we just observe the degradation value of Y;(t;) at the time ¢, estimating the
missing value Y5(t) is of our interest.
0 Let AY(tr) = Ys(tr) — Ys(tr—1), and Ahg, = hg(tr,vs) — hs(te—1,7s), s =1,2.

@ We can obtain that

Ah
where Apy = (g;Ah;z),

AY - 02 Ahyy, + 0282 (Ahqy)? 828182 Ay Ahay .
6261 BaAhy g Ahay, 03 Ahay, + 6233 (Ahoy)?
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@ Given AY](ty), the conditional mean of AY3(t) is

628182 Ahay,

E(AY>(ty)) = Bo2Ahay + o 82520y

(AY1(tk) — PrAhag).

@ The Bayesian estimation of Y3(tx) can be obtained as

521 82Ahay

Ya(tk) = Ya(te-1) +/ ['82Ah2k * 02 4 6232 Ahix

(AYi1(tk) — B1Ahak) | f(©]2)dO,

where f(©|z) is the posterior PDF of ©.
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Simulation study

@ The mean degradation paths of the two PCs are 1.5¢ and 0.7t2. Thus,
(B1,B2) = (1.5,0.7), and (71,72) = (1,2).
@ The diffusion parameters (02, 02) = (0.4,0.3), and §% = 0.04.
@ A total number of n systems are put into test, and each systems are measured m

times. We choose n = 3,4,5 and m = 6, 10.

@ 10,000 independent datasets for each experimental setting are generated to compute
the point estimates, the root mean square errors (RMSE) and the empirical coverage
probabilities with nominal level 95%.

@ We run the Gibbs sampling 80,000 times, and discard the first 20,000 times as the
burn-in period. The length of the thinning interval is taken as 20.
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Table 3.1: Bayesian estimates of the parameters based on 10,000 replications.

(n,m) Estimates [ Ba o? o3 52 o Yo

(3,6) Mean 1521 0.718 0.415 0.332 0.0376 1.113 2.215
RMSE 0.212 0.116 0.175 0.117 0.0239 0.221 0.454

(3,10) Mean 1.524 0.714 0.413 0.321 0.0382 1.112 2.224
RMSE  0.205 0.110 0.138 0.101 0.0204 0.201 0.398

(4,6) Mean 1518 0.717 0.421 0.322 0.0377 1.095 2.150
RMSE  0.194 0.105 0.168 0.107 0.0199 0.189 0.361

(4,10) Mean 1519 0.711 0.417 0.318 0.0382 1.091 2.121
RMSE  0.185 0.099 0.128 0.091 0.0178 0.157 0.326

(5,6) Mean 1.505 0.703 0.416 0.312 0.0386 1.043 2.103
RMSE  0.167 0.092 0.152 0.089 0.0157 0.146 0.252

(5,10) Mean 1.506 0.708 0.419 0.308 0.0386 1.051 2.107
RMSE  0.150 0.085 0.113 0.085 0.0141 0.102 0.228
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Table 3.2: Coverage probabilities of the interval estimates with nominal level 95%.

(n,m) B Ba o? 03 52 " Y2

(3,6) 0.912 0.913 0.974 0.979 0.934 0.969 0.982
(3,10) 0.926 0.924 0.976 0.977 0.938 0.965 0.975
(4,6) 0.928 0.922 0.974 0.980 0.940 0.968 0.977
(4,10) 0.931 0.938 0.969 0.976 0.936 0.963 0.968
(5,6) 0.934 0.934 0.969 0.976 0.948 0.964 0.962
(5,10) 0.944 0.942 0.968 0.961 0.948 0.959 0.963
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Misspecification

@ There might be a mis-specification of the distribution «. Another simulation is used to
check the robustness of the normal assumption.

@ We assume that « follows the normal, lognormal, Weibull and Gamma distributions.
@ The proposed model is used to fit data generated under these distributions.

@ The estimated 10% quantile of the failure time distribution is compared with the true
quantile.

@ The relative biases (RB) are computed using 10,000 Monte Carlo replications.
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Table 3.3: RBs of the estimated 10% quantile under different distributions of a.

(n,m) Normal Lognormal Weibull Gamma

(36)  0.389 0.338 0.417  0.407

(3,10)  0.218 0.0248 0.144  0.096

(4,6) 0.0811 0.168 0.306 0.217

(410) 0.124  0.0421  0.0584  0.030

(5,6) 0.185 0.0960 0.178 0.0578

(5,10)  0.0400 0.0191 0.0758  0.0377
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Case study

Multivariate degradation model Bivariate Wiener model

@ Following Peng et al. (2016), we assume hq(t,vy1) =t and ha(t,v2) = t72.

Table 3.4: Bayesian estimation of model parameters using heavy machine tool data.

Our model Peng et al. (2016)
Parameters Mean  SD 95% Cl Mean SD 95% Cl

B 0.871 0.026 (0.826,0.927) 0.875 0.132 (0.675, 1.172)
Ba 0.142 0.040 (0.079, 0.233) 0.162 0.051 (0.086, 0.281)
o? 0951 0.164 (0.683,1.322) x  x x
o2 0.101 0037 (0.050,0.193) x  x x
Y2 1.915 0.091 (1.741,2.092) 1.867 0.091 (1.690, 2.045)
52 0.0084 0.0096 (0.0019, 0.030) X X X
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Multivariate degradation model Bivariate Wiener model

Table 3.5: Prediction of the missing degradation observations.

Our model Peng et al. (2016)
Parameters Mean SD 95% ClI Mean SD 95% ClI

yo(tin)  76.00 3.38  (69.95, 83.32) 7230 356 (65.64, 79.75)
ya(tae)  57.05 158 (54.12,60.33) 56.26 4.64 (48.71, 67.02)
ya(taro) 7152 1.84 (68.10,75.38) 69.66 6.33 (59.03, 83.98)
ya(tar) 7673 2.08 (72.55,80.76) 7445 6.90 (62.82, 90.03)
yo(ts11) 8552  2.49  (80.94,90.79) 84.43 553 (75.19, 96.88)
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Figure 3.2: The reliability of the system and the two PCs.
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Figure 3.3: Estimation of degradation values of the second PC.
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Figure 3.4: The reliability functions of the RUL for the three systems.
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e Multivariate degradation model
@ Bivariate Wiener model
@ Multivariate inverse Gaussian model
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Motivated example: PMB degradation data

PC1 PC2
0.34 4 0.34

p-value: 0.737
Unit
-1

p-value: 0.62

0.2+

Value
t
Sample

0.1+

0.04
] 10 20 30 0 10 20 30 T T T T T T T T
Time (days x3) 00 0.1 0.2 ‘Il')hseoreti?:gl 0.1 0.2 03
(a) Degradation paths (b) Q-Q plots using IG distribution

Figure 3.5: Summary of Permanent magnet brake (PMB) data for two PCs: degradation
paths and Q-Q plots.
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PMB data with two PCs

Unit 1 2 3 4 5 6 7 8
Correlation 0.819 0.749 0.806 0.840 0.779 0.749 0.765 0.800

Figure 3.6: Pearson correlation coefficients of two PCs across various units.

@ Objective: establish a multivariate IG process model incorporating common effects.
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Outline

o Conclusion
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Conclusion

Conclusion

Bayesian statistical inference for

@ Two-phase degradation models based on
o Wiener model
o Inverse Gaussian model

@ Multivariate degradation models based on
o Bivariate Wiener model

o Multivariate inverse Gaussian model

v

Challenges for Bayesian statistical inference

@ Fast approximation for MCMC-based Bayesian methods: ABC, INLA, VB

@ ADT for stochastic process based degradation models
@ More complex random effects models into the degradation model

@ Deep Bayesian learning for PHM, with degradation data and sensoring data.
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Conclusion

Thanks!
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